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ABSTRACT. We examine the numerical approximation of the first-kind integral 
equation on a plane rectangle defined by the single-layer potential of the three- 
dimensional Laplacian. The solution is approximated by nodal collocation with 
piecewise bilinear trial functions on a rectangular grid. We prove stability and 
convergence of this method in the Sobolev space j- 1/2. A key ingredient 
in the proof is the observation that the collocation equations define symmetric 
positive definite Toeplitz matrices. 

1. INTRODUCTION 

Let Q := (-1, 1) x (-1, 1) C ]R2. The first-kind integral equation on Q, 

(1.1) Vu(x) := Xu(y)j > f(x) (x E Q), 

gives the solution of the Dirichlet problem for the Laplace equation in RI3\Q 
with Dirichlet data f given on Q ("screen problem") (see [12, 25]). One 
important application of (1.1) has been the computation of the capacitance of 
the square plate Q. The numerical computations were frequently made with 
collocation methods, although a convergence proof was not available. For the 
numerical approximation of the solution u of (1.1), we introduce a grid ZN 
on Q. 

(1.2) N= {Xk =k= N ( k N) kEZ2}. 

As trial space we use the space S1 (ZN) of all continuous piecewise bilinear 
functions with nodes in ZN. Then our collocation scheme is the following: 
Find a function uN E S1 (ZFfN) whose nodal values vanish outside Q such that 

(1.3) VUN(X4) = f(X4) for XN E FNflQ 

The main result of this paper is the stability and convergence of this method in 
the Sobolev space H-1/2 (see Theorem 3.1). 
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The mapping properties of the operator V in Sobolev spaces are well known 
(see [25]). In particular, V defines a positive definite symmetric bounded bilin- 
ear form on the space H- 1/2(Q) . This fact implies immediately the convergence 
of any Galerkin approximation scheme for (1.1). Such Galerkin schemes with 
various spline spaces have been studied theoretically as well as practically by 
several authors (see [25, 15, 6, 7, 16]). 

In contrast to Galerkin methods, convergence proofs for collocation meth- 
ods for higher-dimensional integral equations are rare. With the exception of 
second-kind Fredholm integral equations, only a few special classes of integral 
equations have been analyzed successfully: bisingular integral equations in [10], 
and higher-dimensional singular convolution operators of order zero in [21 ] (see 
also [11, 17]). In [17, 2, 1] one finds overviews of the history of collocation 
methods for partial differential equations and pseudodifferential equations. 

Collocation methods for boundary integral equations for two-dimensional 
boundary value problems, i.e., for integral equations on open or closed curves 
in 1R2, have been studied extensively by many authors with many different 
methods (see [27, 17] for recent summaries). 

Prossdorf and Rathsfeld in [18] use the observation that the collocation ma- 
trices are related to finite sections of a fixed infinite Toeplitz matrix. Then 
the symbolic calculus for Toeplitz matrices, based on Fourier series, can be ap- 
plied. For the case of strongly singular integral operators (translation-invariant 
pseudodifferential operators of order zero) on cubes in R"m, m > 2, a related 
method was used in [21 ] to prove stability and convergence of piecewise bilinear 
collocation in the L2 norm. In the present paper, we use this idea as a basis 
for the analysis of the collocation method for the operator V in (1.1), which 
is a pseudodifferential operator of order -1 . We expect that our approach will 
work for more general strongly elliptic pseudodifferential equations. 

The infinite Toeplitz matrix which we obtain here for the collocation scheme 
(1.3) is positive definite and symmetric (see Corollary 3.5), and the finite colloca- 
tion matrices inherit this property. This fact can also be understood by relating 
the nodal collocation method with piecewise bilinear splines to the Galerkin 
method with piecewise constant trial and test functions. The matrix elements 
for both methods are actually the same (see Remark 5.1). Thus, our method is 
also related to the method of Arnold and Wendland [2], which gives convergence 
proofs for nodal collocation with odd-order splines for strongly elliptic pseudo- 
differential equations on smooth curves by reducing the collocation scheme to 
an equivalent Galerkin scheme. 

After proving, in ??2-4, the stability and convergence of the collocation meth- 
od (1.3), we mention in ?5 some generalizations of our scheme, which can easily 
be treated with the same ideas. In the same way one also proves stability and 
convergence for the corresponding one-dimensional problem, namely the nodal 
collocation with piecewise linear trial functions on a uniform grid for the first- 
kind integral equation on an interval defined by the single-layer potential for the 
two-dimensional Laplacian (screen problem in ]R2). Generalizations to higher 
dimensions are also possible. 

2. BASIC NOTATION 

In the previous section, we introduced the domain Q and the grid ZN . We 
need the following additional notation for N E N, 
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(2.1) OwN := {k E Z2IXkN E } = }{k E Z2I kjI < N, j = 1, 2}. 

A nodal basis for the space S1 (FN) of piecewise bilinear splines is defined as 
follows: Let k0(t) := max{O, 1 - ItI} for t e IR, and define for x E 2 

(2.2) Wo(x) := q00(xI) * (X2), 

(2.3) 4N (X) := (o9(N(x -XN)) I (Nx - k). 

Then S1 (ZN) = span{(oN I k E Z2}. We need the following (2N+ 1 )2-dimensional 
subspace of S1 (ZN), 

(2.4) S (EN n f ) := span{oN| Ik E cNo}. 

For any continuous function f on R2, we define the restriction to MN by 

(2.5) rNf := (f(xkN))kEz2. 

For any sequence (fk)kEz2 we define the piecewise bilinear interpolant by 

(2.6) ~~~~~iN(fk) :=Efkf 

kez kEZ2 

The system of equations corresponding to the collocation equations (1.3) can 
be written as 

(2.7) rNViN(uk) - rNf on (oN 

where (Uk)kEN are the nodal values of UN E S1 (ZN n ), 
(2.8) uN = Z Uk(k4. 

kEWN 

The matrix elements of the system (2.7) are given by 

(2.9) ((V(4N)(X4N ))k, k'E N. 

From the translation invariance of the operator V (1.1) and the definition (2.3) 
of the basis functions (D Nwe see that this is a Toeplitz matrix. 

Remark 2.1. The collocation points in (2.7) include the nodes on the boundary 
of Q. The definition of the trial function uN uses these nodes, too. Therefore, 
the support of uN is not contained in K2 but in the slightly larger set 

[-1-NS 1+ ] x [-1 N'1+ 

By Hs(R2) (s E R) we denote the usual Sobolev spaces [13]. For a bounded 
domain A, 

(2.10) p&: U uln 

is the operator of restriction to A. Then 

(2.11) Hs(6) := {ul& I u E Hs(R2)} =pHs(R2) 

and 

(2.12) HS(&) := {u E Hs(1R2) I suppu C 6}. 
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Then, with respect to the natural extension of the L2 duality, 

(2.13) (f, g) jf(x)g(x)dx, 
2 

HS (c) is the dual space of H-s (6)). 
The basic mapping properties of the operator V in the energy spaces are 

summarized in the following lemma which is well known (see, e.g., [14, 25]). 

Lemma 2.2. (i) The operator p&V: H-1/2(&) -- HI/2(&) is an isomorphism. 
(ii) The sesquilinear form (Vu, w) defines an equivalent inner product on 

f-1/2(a): There are constants c1, c2 > 0 such that 

cl l1U1|_I11 f < (VU, U) < C211UlI2(p H-112(&) - fi -H 1/2 (&) 

for all u E f-1/2(<). The constants c1, c2 depend only on the size of the 
domain A. 

(iii) Let W := -AV be the operator of the normal derivative of the double- 
layer potential. Then the sesquilinear form (Wu, w) defines an equivalent inner 
product on H'/2(9): There are constants c1, c2 > 0 such that 

cll||H,(f < (WU, a ) < C211UlI2(#, 

3. STABILITY OF THE COLLOCATION METHOD 

Let 

(3.1) IN = iNrN 

be the interpolation projector onto the spline space S1 (MN). We can write the 
collocation equations (1.3) in the form 

(3.2) pa-N VuN = pfltNfo 

Our aim in this section is the proof of the stability and uniform boundedness 
of the sequence (pnfINV)NEN. Note that the projection I-N is not bounded 
on H1/2, so that even the uniform boundedness is a nontrivial result. 

In the following we will denote by C generic constants independent of N. 

Theorem 3.1 (Stability). There is a constant y > 0 such that for all N E N and 
all W E SI ([N n Q) there holds 

(3.3) |IpnflN VW ||H112(Q) > Y 11 W11H-1/2(1R2)- 

Theorem 3.2 (Uniform boundedness). There is a constant C E IR such that for 
all N E N and all W E S (EN n fQ) there holds 

(3.4) llp~nrNVW ||H112(n) < CIIW IIH-112 (R2) 

For the proof of these theorems we need some additional tools. First we 
need the well-known approximation property and inverse inequality for our 
spline space (see [4, 3, 22]). 
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Theorem 3.3. Let a c R2 be a square. (We need the two cases a = Q and 
a= MQ.) 

(i) For any s E (1, 3) there is a constant C such that 

(3-5) IlprNNv - VIIH12(&) < CNl/>2SlIvHIHs(&) 

for all V E Hs(6), and 

(3.6) |HNv-VHIH1/2(R2) < CNl/>IsvH12a 

for all V E Hs(6). 
(ii) For any t < s < 3 there is a constant C such that 

- 2 

(3.7) IIP&VIIHS(&) < CNs t |P6VH|Ht(6) 

for all V E SI (Z-N), and 

(3.8) IV IIHS(R2) < CNsfIv IIHt(R2) 

for all veSl(ZNfnl&). 

Next we introduce discrete Sobolev spaces. Our spaces are related to those 
studied by Frank [9] and Stephan [24] (see also [20, 19]). 

We define a norm in the space of sequences by 

(3.9) |(Uk)kEZ2 s,N := |iN (Uk)HlHs(R2). 

The discrete Sobolev space is 

(3.10) hs(Z2) = {(Uk)kEZ21 l(Uk)ls,N < co}- 

On the grid wN we define the finite-dimensional subspace 

(3.11) Sh (cN) {(uk)kEZ2 E hs(Z2)Iuk = 0 fork ? w)} 

Thisis CM, M=(2N+1)2,withnorm I 5s,N. 
It is easy to see that for s = 0 we have the norm equivalence 

(3.12) 1(Uk) O,N N 1 (ZNU ) 1 2 

kEZ2 

By " "we denote the equivalence of norms with constants independent of N. 
Taking (3.12) into account, we define the scalar products in 12, 

(3.13) ((uk), (Vk))N = N2 E UkVk- 
kEZ2 

For Fourier series on the square Q (-, i) x (-i, i) we use the following 
notation: 

(3.14) ii() := e ek Uk -=: F(Uk)(); 
kEZ2 

so we have 

(3.15) uk = (27)-2 j ()eik- d<. 
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The integral operator V defines two discrete sesquilinear forms: 

(3.16) (iN(Uk), viN(Vk)) - S Uk((4, Vk o )kjk, 
k,k' 

and 
(3.17) ((Uk), rNViN(Vk))N = N -2 (j UkV(VZIN )(XkN)Vkl- 

k,k' 

The form (3.16) defines a matrix which corresponds to a Galerkin method for 
the equation Vu = f. The form (3.17) corresponds to our collocation method 
(1.3). More precisely, the collocation scheme (1.3) can be considered as a finite 
section method for the infinite Toeplitz matrix defined by (3.17). The diagonal- 
ization of the infinite Toeplitz matrices via Fourier series leads to the following 
representations of the bilinear forms (3.16), (3.17). 
Lemma 3.4. Let U = F(Uk) and V = F(vk) with (Uk) , (Vk) E 11 (Z2). Then 

(i) (iN(Uk), ViN(Vk)) = N- AG(4)i( ) (4) d; 
(ii) ((Uk), rNViN(Vk))N = N 3 fQ ( (4)d4. 

With the operator W defined in Lemma 2.2(iii), we have 
(iii) (iN(Uk), WiNA(Vk)) = N-1 Q A, G( g)(b ()v )d 

Here the functions AG, AC, and )WY G are defined by 

(3.18a) ,lG(g) = 27 *(27r)-2 E 1 + 2rrlr ]7J2 s 
j)4 

2 sin 2 (~/2) 
(3.18b) AC(r) = 8 (27r) 2 5 I4 + 2rrlK 11 j + 2irr)2' 

rEZ2 =1 j 2 rj2 

(3.18c) , WG(g) = 27 * (27r)-2 E I4 + 27rr II (2 j + 2si rj)n 4 

rEZ2 ]=1 

Proof. For functions u E C0 (1R2) we define the Fourier transform by 

(3.19) i() := j e-iXu(x) dx. 
2 

It is well known (see [8]) that the operators V and W have the Fourier repre- 
sentation 

(3.20) Vu(x) = 2(2X)-2 |ei4Xj1j-l-i(<) d4, 
2 

(3.21) Wu(x) = _ (2)- j eiX JxIu'() dX. 
22 

From the definition (2.3) we obtain 

(3.22) (o) = N2e i 0k/Nvp (i)N 
Parseval's formula yields 

((or, V?4Nj) = 27-2f Ng) N d 

(3.23) 3 k2 = N3 j e i(k-k) G() d , 
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with 

(3.24) )G(-) - (27)2 Z 1 + 2irlK-'oI + 27rr)12. 
rEam 

From (2.2) we compute the Fourier transform 

(3.25) &(4) - 16fJ sin (4X/2) 
j=1 

Inserting this in (3.24), we find (3.18a), and from (3.16) we obtain 

(iN(Uk), ViN(Vk)) = N 3 
E UkVki j ei(k'k) )NG(4) dc 

k, kitEZ2 

= N-3 X 4G() dX. 

This proves (i). For a more detailed computation, see [21]. For the bilinear 
form (3.17), we compute with (3.20) the matrix element 

V(4k4) = 2(2X)2 J ei 4 1 (4) dX 
(3.26) 2 

= N-1 J ei(k-k')i AC (-4) d , 
Q 

with AC defined by (3.18b). This proves (ii). 
For (iii), we observe that according to (3.21), we have to replace the multiplier 

141-l in (3.23) by 141. [ 

From the definitions (3.18a, b, c) we see immediately that the functions 
AG, AC, and AW,G are positive Coo functions on Q\{0}, and that AG and 
AC behave like &(14-1) at 4 = 0, whereas AWG(g) = &(14) near 4 = 0. 
Therefore, AG, AC, and (AW G)-1 define equivalent weights on Q, i.e., there 
exist constants C1, C2, C3 > 0 such that 

(3.27) C1AG( ) < C2AC(4) < (AWG(g))-1 < C32 (g) 

for all 4 E Q\{0}. 

Corollary 3.5. For any N E N, the collocation matrix in (1.3) is positive definite 
and symmetric. The collocation equations are always uniquely solvable. 

Corollary 3.6. (i) Both quadratic forms (3.16) and (3.17) define norms on 
h/112((ON) which are equivalent to the 1 I-1/2,N norm (3.9) with constants 
not depending on N. 

(ii) Let a c R 2 be a bounded domain. For sequences (Vk) with supp iN(Vk) C 
a we have the norm equivalence 

(3.28) 1(kl22 N N-' 2 
| (A)(G g)) -I d4. 

Proof. The equivalence of the norms corresponding to the sesquilinear forms 
(3.16) and (3.17) follows directly from Lemma 3.4(i) and (ii) and (3.27). The 
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equivalence with the l- 1/21,N norm follows from Lemma 2.2(ii). The equiv- 
alence (3.28) follows from Lemma 2.2(iii) together with (3.27) and Lemma 
3.4(iii). n 

Proof of Theorem 3.1. Let Q = (-2, 2) x (-2, 2). We need an extension 
operator L from HS (Q) to HS(Q). It is well known [23] that such an operator 
exists as a continuous linear operator 

(3.29) L: Hs(Q) - Hs(Q) for all s > 0. 

We can assume that L is given in such a way that supp HNLv c Q for all N 
and all v E Hs (Q). We show first that there is a constant C independent of 
N such that 

(3-30) IlrNLPQU IHlI2(^Q < CIIPQUIIH?I2( ) 

holds for all u E SI (ZF-N) . Indeed, we have 

(3.31) IHNLPQUIH1/2(^) < IILPQUII + II(I - 
HN)LPQUII_12( 

The first term on the right-hand side in (3.31) is bounded by CIIPQUIIH1/2(Q) 
according to (3.29). For the second term we use the approximation property 
(3.6) and the inverse inequality (3.7) and obtain for s E (1, 4) 

HS(~~~2) 
11(I-_lrN)Lp,,uII_ -(fi < CN' 12-sIIlLp,,uII_ _fi 

< CaN/ 1s IIPQUIIHs(Q) < CIIPQU||H1/2(Q2). 

Next we show that there is a constant independent of N such that 

(3.32) ((Uk), (Vk))N< c I (Uk) |-1/2, N* (Vk) 1/2, N 

for all sequences (Uk), (Vk) with supp iN(Uk) C Q. supp iN(Vk) c Q. By 
Parseval's formula, we have 

((Uk), (Vk))NI = N 2(2r) i2 | J ( ) (4) d| 

(3.33) < (N-3 1 iU(4)12AG(4) d4) 1 

(N-i 1 J g)12 (AG( )) -1 d)1 

The first factor on the right-hand side is bounded by C (Uk)1- 12,N according 
to Corollary 3.6(i), and the second factor is bounded by Cl (Vk) 1/2, N according 
to (3.28). Thus (3.32) is shown. 

Combining the estimates (3.30), (3.32), and Corollary 3.6(i), we obtain for 
w = iN(wk) E SI(ON n Q) 

(Wk)K-1/2,N IlpHNVWIIHI/2(Q) > CIHNLpnHNVW IIj/2(Q) C*0wk)-1/2,N 

= C~rNLpnjINVW 1/2,N * (Wk)1-1/2,N > CQ((wk), rNLp~jNVW)NI 

= CI((Wk), rN ViN(wk))NI ? C 1wk)l/2 N. ? 

Proof of Theorem 3.2. This follows by the same arguments as (3.30) above. E 
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4. CONVERGENCE 

In this section we prove the following convergence theorem. 

Theorem 4.1. Let f E HI+e(Q) with some e > 0 and u E H-1/2(.Q) be the 
solution of the integral equation (1.1). Then for any N E N, the collocation 
equations (1.3) have a unique solution UN E SI (ZN n Q). For any n > 0 there 
is a constant C > 0 independent of N such that 

IIU - UNIIH-1I2(R2) < CN I/2+ f11II HI+6(). 

Proof. Let pN be the L2 orthogonal projector onto S1 (ZN n Q). It is well 
known that pN is uniformly bounded in the Hs(1R2) norms for IsI < 3 and 
that there holds the approximation property 

(4.1) IV- PNVIIH-1/2(R2) < CN 1/2 IIVIIH-U(R2) 

for all v e H-1 (Q). Then we have 

(4.2) IIu - uN IIH-1/2(R2) < IIu pUIIH- 12(R2) + IIPNu - UNIIH-1/2(R2). 

We know that u E H-I(Q) holds for any n > 0 (see [5]). Therefore, (4.1) 
gives for the first term on the right-hand side of (4.2) the estimate 

(4.3) IIU - PNUIIH-12(R2) < CN 1/2+,IIUIIH-?l(0) < CN 1/2+ I|fIIH1-7(Q). 

For the second term on the right-hand side of (4.2) we estimate further, using 
the stability estimate (3.3) and Lemma 3.3: 

IIPNU - UNIIH-1/2(R2) < CIIp~jINV(PNU - UN)IIH112(a) 

= CIIpQHN VPNU _ 
pflINfIH12(j ) 

< CI|pQFINVPNU -pnfIIH1/2(Q) + Ipa(f -_ Nf) IIH12(a). 

The last term can be estimated with (3.5), 

I|pI(f -_ Nf)IIH?/2(2) < CN1/2 (l+6)IIfIIH+a(n). 

Finally, we have 

IIpQ1HNVpNu - pQf IIH1/2(Q) 

? Ilp2fNJVpNU _pQ VPNUIIHIH2(Q) + IIpQ(VPNU - VU)IIH1/2(Q) 

< C(N-1/2-I 11 VPNuIIHl+e(Q) + IIPNU- UIIH-112(R2)) 

< C(N-1/2-8 IIPNu IIHe(R2) + N 1/2 If IIHI+6(U)) 

< C(N-1/2+?IIPNUIIH-17(R2) + N 1/2IIfIIHI+e(Q)) 

< C(N-1/2+, IIUIIH-I(R2) + N1/-1IfIIHI+:(n)) 
< CN- I 2+, If IIHI+re(Q)* a 

5. GENERALIZATION 

In this final section we want to mention briefly some generalizations of the 
collocation method (1.3) for which our present approach is also applicable. 

The first generalization concerns the domain Q. Instead of the square, we 
can consider any polygonal domain which is a union of a finite number of cells 
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of some rectangular grid Ah ,h2 := {(k, hi, k2h2) I k E Z2}. The grid CON has to 
be replaced by IAhi ,2 . It is easy to see that the results of ??3 and 4 remain 
valid for this case. 

The second generalization concerns the splines which are used as trial func- 
tions. We can prove the stability and convergence results of the previous sections 
for splines which are tensor products of univariate splines of odd order. Since 
the statements of Theorems 3.1, 3.2, and 4.1 remain the same in this case, we 
only mention here the change in the essential part of the proof of Theorem 3.1, 
namely statement (ii) of Lemma 3.4. If we use tensor products of B-splines of 
degrees di and d2 as a basis, then the symbol AC(4) of the collocation matrix 
is changed to 

(5.1) C() = (27)-2 . 2d, +d2+1 S 1I + 2Krl-K1 H (sin( 1/2) )+ 
rE7Z2 =1 U + 2irr) 

For the interpolation projection IN in Theorems 3.1 and 3.2, we use piecewise 
bilinear functions also in this more general case. It is clear that the new function 
AC in (5.1) is a weight function on Q which is equivalent to the functions 
defined in (3.18a) and (3.18b). 

Remark 5.1. If we compute the symbol AG of the Galerkin matrix with tensor 
product splines, we obtain 

(5.2) G (4) =(27-2 . 22(di +d2)+3 Z 
si + 2r n 

(sj + 2) 2d)+2 

rEZ2 j=1 711 
Comparing this formula for d1 = d2 = 0 with (3.18b), we see that the matrix 
elements for the piecewise bilinear collocation method are the same as those for 
the piecewise constant Galerkin method. 

The last generalization which we want to mention concerns the integral op- 
erator V. Instead of V as defined in (1.1), we can use a convolution operator 
A which has a Fourier representation 

(5.3) Au(4) = 

We make the assumption that A is strongly elliptic of order -1 , i.e., 

(5.4) qA(t4) = t-lqA(4) for all 4 e R12\fO1, t > O. 

I4I * CA(4) is bounded, and 

(5.5) ReqA(4)>y>O forall e]R2with 1I=1. 

Then we can prove the stability result of Theorem 3.1 exactly in the same way 
as for V above. The symbol AC of the collocation matrix is then changed to 

(5.6) )A C(4) = 16 * (27)<2 E2 cYA(4 + 27r) 7 (j + 27rj)2 

From the assumption (5.5) it follows that 

(5.7) ReAC(4) > 2yAc() for all 4 E Q, 
which is an essential part of the proof of the stability estimate. 
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Finally, we want to mention that the stability result also holds for strongly 
elliptic systems of convolution operators of order -1, for instance for the op- 
erator defined by the single-layer potential of the equations of linear three- 
dimensional elasticity theory. 
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